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Published X-ray powder measurements on diamond and three different sets of published X-ray data 
on silicon have been re-analysed for bonding features using full-matrix least-squares refinement com- 
bined with a statistical analysis of the results obtained. In all cases a highly significant improvement 
in the fit between observed and calculated structure factors was obtained by introducing a tetrahedral 
distortion of the spherical 'prepared' charge distribution, but subsequent introduction of a fourth-order 
cubic distortion proved to be highly significant only for the diamond data and one set of the silicon 
data. Hartree-Fock calculations gave a better fit to the diamond measurements than calculations based 
on Hartree-Fock-Slater wave functions. The necessity for placing restrictions on the form of the radial 
functions associated with the non-spherical distortions, the large estimated standard deviations of the 
distortion parameters and the dependence of the parameter values on the set of basis wave functions 
chosen to describe the spherical 'prepared' charge distribution indicate the need for exercising caution 
in analysing the experimental measurements for bonding features. 

Introduction 

The diamond powder measurements of G6ttlicher & 
W61fel (1959) have recently been analysed for bonding 
features by Dawson (1967b) using a general structure 
factor formalism, Dawson (1967a). Similar bonding 
features in silicon have also been described by Dawson 
(1967c), who analysed the three different sets of X-ray 
data for silicon at present available]" in the literature, 
i.e. the powder measurements of G6ttlicher & W61fel 
(1959) and the perfect single-crystal measurements of 
DeMarco & Weiss (1965) and Hattori, Kuriyama, 
Katagawa & Kato (1965). 

Another approach, reported by Weiss (1964) and 
DeMarco & Weiss (1965), has also been used to analyse 
the X-ray data on diamond and silicon for bonding 

* Present address: Applied Mathematics and Computing 
Section, Australian Atomic Energy Commission Research 
Establishment, Private Mailbag, Sutherland, N.S.W.2232, 
Australia. 

I" Hart & Milne (1969) have recently reported the measure- 
ment of the 220 reflexion in silicon. However, their results have 
not been used here since they do not represent a complete set 
of data for silicon. 

features. The similarities and differences between this 
and the approach of Dawson (1967a) are discussed in 
detail by Dawson & Sanger (1967) where it is shown 
that only the latter's approach permits adequate inter- 
pretation of the experimental data. 

In the present paper the experimental measurements 
for diamond and silicon have been re-analysed for the 
features of bonding using the formalism of Dawson 
(1967a). However, this time the method of least squares 
has been used to determine the various parameters as- 
sociated with the non-spherical distortions of the spher- 
ical 'prepared' charge distribution and the significance 
tests of Hamilton (1964, 1965a) are applied before dis- 
cussing the bonding features in these compounds. 

Theory 

The space group of diamond is Fd3m (0  7) and the 
complete lattice may be built up from two atomic posi- 
tions with point group symmetry 43m (Ta) combined 
with the normal face-centred translations. 

Application of the formalism of Dawson (1967a) 
shows that, in the calculation of structure factors for 
the diamond lattice, allowance must be made for non- 
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centrosymmetry in the distribution of electronic charge 
about each reference nuclear position. These consider- 
ations finally lead to the structure factor expressions, 

F(S) =8f~(S), for h + k  + / = 4 n  
=4]/2[f;(S)+fa(S)], for h + k + l = 4 n + l  (1) 
= 8f~,(S), for h + k + l = 4 n + 2  
=4]/2[f~(S)-f ' ,(S)], for h + k  + l = 4 n + 3  

where F(S) is the structure factor and the subscripts 
c and a denote the terms which respectively possess cen- 
trosymmetry and antisymmetry about the reference 
atomic positions. The various terms in equation (1) are 
defined by the relations, 

f ; (S) =re(s)Te(S) + 6f;(S) 
f',,(S) = A 3(O, (o) f a(S) (2) 

fif'~(S)= B4(O, ~o)cSfc(S) 
where 

re(S) = 4rw2Pc(r)jo(kr)dr 
0 

S f , ( S )  = - 4zcr2F(r)j3(kr)dr 
0 

S 6fc(S) = 4rcr2G(r)j4(kr)dr 
0 

sinZ 0~ (3) [ 
Te(S) = exp ~ - B ] 

hkl 
A3(O, ~0) = (h 2 + k2 +/2)3i2 

[ (h4--l-k4"q-[ 4) 3 ]  
B4(0,~0)= (hZ+k2+12) z 5 " 

The jn(kr) are spherical Bessel functions of order n, 
k = 2nS= 4n sin 0/2 and pc(r) is the spherical 'prepared' 
component of the atomic charge density. 

In the above equations the non-spherical components 
of the atomic charge density have been expanded to 
fourth order terms only in the Kubic Harmonics of 
Von der Lage & Bethe (1947) and the corresponding 
radial functions F(r) and G(r) refer directly to the 
vibrating atom. Also, an isotropic temperature factor, 
To(S), has been used in equation (2) since diamond and 
silicon have high values of the Debye temperature 
(@u> 1800°K, O ~ = 5 4 3 ° K  respectively) and conse- 
quently any effects caused by anharmonic vibrations 
in these substances are very small at room temperature. 

The conventional reflexions for the diamond lattice 
correspond to h + k + l=  4n, 4n + 1, 4n + 3. The set 
h + k + l =  4n + 2 includes the 'forbidden' 222 reflexion 
and arises from the antisymmetric component of the 
atomic charge density. Reference to equation (1) shows 
that measurements of the structure factors of reflex- 
ions of class h + k + l=  4n + 1, 4n + 3 can supplement 
the evidence provided by the 222 reflexion for the anti- 
symmetric component, fa(S'). On the other hand, re- 
flexions in the class h + k + l=  4n can reveal only centro- 

symmetric non-spherical features which are absent in 
the 'prepared' atom. 

The form chosen for the radial functions F(r) and 
G(r) is influenced by the necessity to satisfy the con- 
dition of zero value at the nuclear position (Dawson & 
Sanger, 1967) and the requirement imposed by data 
limitations to describe these radial functions by a par- 
ticular type of elementary function. Following Daw- 
son (1967a, b) elementary functions of the form 
Pr z exp ( - Q r  2) have been used here, and further re- 
strictions imposed due to data limitations are described 
in the sections to follow [see equation (7)]. 

X-ray data for diamond 

Accurate structure factors for diamond have been ob- 
tained by G/Sttlicher & Wtilfel (1959), who carried out 
X-ray measurements on fine diamond powder at room 
temperature and placed their measurements on an 
'absolute' scale by comparison with powder measure- 
ments on LiF and NaC1. These values, [Fobs(GW)], 
are given in Table 1 together with the authors' esti- 
mates of their reliability. Table 1 also includes a value 
of 1.15 + 0.08 for the magnitude of the structure factor 
of the 222 reflexion. This is the value given by Weiss & 
Middleton (1965) which is in agreement with the value 
1F(222)[ = 1.1 to 1.2 reported by Renninger (1955). In 
each case the value given was claimed to be on an 
'absolute' scale. 

Conventional full-matrix least-squares refinement of 
the complete set of diamond data (i.e. using the spher- 
ical 'prepared' model) gave the isotropic temperature 

2 factor B=0.204 (0.011)A, when the scale factor was 
fixed at unity. The term in brackets represents the esti- 
mated standard deviation (e.s.d.) of the parameter Be 
as calculated by the least-squares procedure. In tiffs 
case the spherical 'prepared' model was based on the 
charge density pc(r), set up from the Hartree-Fock (HF) 
wave functions of Clementi (1965) for C(3p). The cal- 
culated structure factors were obtained by numerical 
integration* at the exact values of (sin 0)/2 using 
Simpson's rule over the 441-point mesh of Herman & 
Skillman (1963). The lattice parameter of diamond, 
a=3.5667 ~ (Swanson & Fuyat, 1967) was also used 
in these calculations. Structure factors, Fea]e(HF), 
based on these parameters are included in Table 1 and 
the agreement factors, unweighted R(Ru) and weighted 
R(Rw) as defined below, are shown at the bottom of 
this Table. 

Ru = l~lFobs-- Fea, el/l~Fobs (4) 

R w  = [ ~2WFobs2 (5) 

This conventional refinement of the complete set of 
diamond data using HF wave functions was repeated, 

* Hanson, Herman, Lea & Skillman (1964) showed that 
this method is numerically accurate to seven significant figures. 
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this time allowing the scale factor as well as the iso- 
tropic temperature  factor Bc to vary. However,  there 
was no significant change in the scale factor f rom the 
value of unity, nor any significant improvement  in the 
fit to the observed data  as judged by using the signi- 
ficance tests of Hamil ton  (1964, 1965a). 

Each of  the various refinements of the complete sets 
of  d iamond and silicon data,  to be described in the 
sections to follow, was carried out twice; first of  all 
with the scale factor fixed at unity and then with the 
scale factor allowed to vary. In all of the refinements 
where the scale factor was allowed to vary, there was 
no significant difference between the resulting value of 
the scale factor and the value of unity, and the inclu- 
sion of this extra parameter  in the refinement did not  
produce a significantly better fit to the observed data  
as judged by the significance tests of Hamil ton  (1964, 
1965a). Consequently,  any reference to the significance 
tests of  Hamil ton  in the rest of this paper  will be con- 
fined to examining the effects of introducing non- 
spherical distortions of the spherical 'prepared '  charge 
distribution in order to give a better fit to the observed 
data. 

Non-spherical analysis of  diamond data using HF wave 
functions 

Examinat ion of  the values given in Table 1 for the 
observed structure factors for d iamond and those cal- 
culated on the basis of  a spherical 'prepared '  model 
shows that  significant differences occur mainly at small 

values of (sin 0)/2. Using equat ion (1) these differences 
can be seen to correspond to the relations 

Fobs(S)-- Feale(S)=8B4(O,q))~fc(S), for h + k + l=4n  

=4~2[B4(O, ~o)ffc(S) + A3(O, q))f a(S)], 
for h + k  + l = 4 n +  l 

=8A3(O,~o)fa(S), for h + k  + l = 4 n +  2 

= 4l/2[B4(0, q))ffc(S) - A 3(0, q~)fa(S)], 
for h + k + l = 4 n + 3  

(6) 

and the experimental measurements  thus give infor- 
mat ion about  the Fourier  t ransforms fa(S)  and Ofc(S) 
and hence about  the radial functions F(r) and G(r). 

In order  to fit non-spherical components  to these 
differences, simple radial functions F(r) and G(r) of 
the form 

F(r) = Ar 2 exp ( -  Br 2) 
G(r) = Cr 2 exp ( -  Br 2) (7) 

were chosen, following Dawson  (1967a, b). These have 
the general form given previously and fur thermore have 
been given the same exponents. There is no a priori 
reason why these functions should have the same radial 
behaviour,  or even the same form, but  in view of the 
limited data  available here, it was considered that  no 
more  than  three adjustable distortion parameters  
should be used in the least-squares analysis. 

The first stage of  the non-spherical analysis was to 
determine the values of the two parameters  A and B 
associated with the te trahedral  distort ion fa(S),  while 

Table 1. Structure factors for  diamond on an absolute scale 

sin 0/2 
hkl (/~k -1) Fobs(GW) Fca~c(HF) 
111 0.2428 18.566__ 0.040 17.012 
220 0.3965 15.288 + 0.072 15.211 
311 0.4649 9.006+ 0.040 9-515 
222 0.4856 - 1.150 + 0.080* 0.000 
400 0.5607 11.112 + 0.072 11-905 
331 0.6111 8.287 + 0.028 7.981 
422 0.6868 10.504_+ 0.016 10.453 
333"1, 0-7284 7.212 + 0.028 7.082 
51 lJ 0.7284 7-212+ 0.028 7.082 
440 0.7930 9.080 + 0.072 9.348 
531 0.8294 6.256 + 0.017 6.346 
620 0.8866 8.352 + 0.040 8.391 
533 0.9193 5.696 + 0-028 5.700 
551"[ 1"0011 5"069 + 0"017 5"127 
711J 1'0011 5"069 + 0"017 5"127 
642 1 "0491 6"760 + 0"024 6"791 
553"( 1"0768 4"582 + 0"045 4"618 
731 j 1.0768 4-582 + 0.045 4.618 
6601. 1.1895 5.584 + 0.032 5.530 
822j 1.1895 5.584 + 0.032 5.530 
555[ 1.2140 3-756 + 0.034 3.766 
751 j 1-2140 3.756 ___ 0.034 3.766 
753[ 1.2772 3.439 + 0.023 3.410 
91 l j  1.2772 3.439 + 0.023 3.410 

Agreement Ru = 0.0325 
factors Rw = 0.0372 

Foale, T(HF) Feale, Tc(HF) Foaae(HFS) Foaxo, rc(HFS) 
18"570 18"568 17"538 18"611 
15"210 15"459 15"710 15"886 
9"080 8"991 9"727 9"232 

-- 1"242 - 1"102 0"000 - 1"144 
11"902 11"302 12"019 11"470 
8" 151 8"249 8 "023 8"327 

10"449 10"512 10"467 10"530 
6"969 7"073 7"083 7"048 
7"100 6"996 7"083 6"997 
9"344 9"371 9"339 9"367 
6"324 6"324 6"338 6"311 
8"387 8"333 8"377 8"315 
5"721 5"733 5"690 5"734 
5"130 5"132 5"117 5"126 
5" 122 5"089 5" 117 5"077 
6"785 6"784 6"777 6"773 
4"603 4"609 4"609 4"599 
4"617 4"603 4"609 4"595 
5"525 5"519 5"516 5"507 
5"525 5"505 5"516 5"492 
3"769 3"768 3"756 3"762 
3"760 3"754 3"756 3"746 
3"410 3"405 3"399 3"397 
3"407 3"391 3"399 3"380 

Ru=0"0140 Ru=0"0097 Ru=0"0327 Ru=0"0147 
Rw=0"0140 Rw=0"0101 Rw=0"0312 Rw=0"0133 

* Value due to Weiss & Middleton (1965). 
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the effects of  the 4th order cubic distortion c~fe(S) are 
neglected. Full-matrix least-squares refinement of the 
complete set of d iamond data allowing A, B and an 
isotropic temperature factor Be to vary, with the scale 
factor fixed at unity, gave the results 

A =7.78 (1-87) 
B =2.15 (0.19) (8) 
Bc = 0.205 (0.004)/k 2 . 

Structure factors, Feale, T(HF), based on these param- 
eters are listed in Table 1. 

When the effects of  the 4th order cubic distortion 
are included in the refinement the following results are 
obtained, 

A =7.05 (1.43) 
B =2.21 (0.14) 
C = - 2 . 1 1  (0.52) (9) 
Be = 0.206 (0.003) A 2 . 

Structure factors, Fcalc, Tc(HF), based on the param- 
eters given in equation (9) are listed in Table 1. 

Applicat ion of the significance tests of Hami l ton  
(1964, 1965a) to the above results shows that the intro- 
duction of a tetrahedral distortion gives a highly signi- 
ficant improvement  in the fit to the observed data, and 
further that a model  including the effects of  both a 
tetrahedral and a 4th order cubic distortion gives an 
even better fit to the experimental measurements.  The 
various weighted R factor ratios to be compared in 
these two cases are shown in Table 2. 

The validity of the significance tests depends on the 
linearity of the model  being used in the least-squares 
refinement procedure (Hamilton,  1965b). A study of 
the dependence of  the weighted R factor on each of 
the distortion parameters showed that the conditions 
of linearity were satisfied in the present analyses. 

The parameters A, B and C of the radial functions 
F(r) and G(r) associated with the tetrahedral and 4th 
order cubic distortion can now be used to evaluate the 
electron redistribution of the spherical 'prepared'  
charge distribution due to these distortions. The de- 
tails of  these calculations and the resultant effects of  
bonding redistribution in the d iamond lattice have been 
described by Dawson (1967b). However, some of the 
numerical  features of these calculations will again be 
presented here, based on the parameters given in equa- 
t ion (9) together with an indication of their accuracies. 

The electron content of each of the eight negative 
lobes, n-,  associated with the 4th order cubic distor- 
tion is defined by the relation 

¢x:)  

27¢3 rcrZG(r)dr " (10) 
n . . . .  1 2 8 0 0  

If allowance is made for the errors in the parameters  
B and C deriving G(r) then an e.s.d, for n -  can be cal- 
culated using the equation 

On- A C +  AB (11) A n _ =  ~ B,c c~B B,c 

where An_, AC and AB are the e.s.d.'s for n-, C, and B 
respectively. 

I f  the values given in equation (9) are used in equa- 
tions (10) and (11) the following result is obtained, 

n -  = 0.0222 (0.0090) electrons.  (12) 

Similarly the electron content N+ of a positive lobe 
associated with the tetrahedral distortion is defined by 
the equation 

S N + =  ~ rZF(r)dr. (13) 
0 

Evaluating equation (13) using the parameters of  F(r) 

Table 2. Application of  the significance tests of  Hamilton (1964, 1965a) to the results obtained by comparing the 
various distortion models based on two different sets of  wave functions, with the diamond powder measurements o f  

G6ttlicher & W6lfel (I 959) 

The various hypotheses can be rejected at the 100~ % confidence level if the computed weighted R-factor ratios R are greater than 
the significance points Rb, n-~.0c where b is the number of parameters out of the total p parameters that are fixed during the initial 

refinement and n is the total number of observations. 

Wave 
functions 

used 
HF wave 
functions of 
Clementi 
(1965) 

HFS wave 
functions of 
Herman & 
Skillman (1963) 

Results based on refinement 
of complete set of data 

Confidence 
Comp,uted level for 

Significance weighted-R rejection of 
points factor ratios hypothesis 

R2, 21,0.005 RI = Rsoher/Rta * <~0"5 % 
= 1"287 = 2"657 

RI, 20,0"005 R2 = Rea/Rtp ? < 0"5 % 
= 1"224 = 1"387 

R2.21,0-005 Rt = 1"926 < 0"5 % 
= 1 "287 

R1,20,0.005 R2 = 1"218 ~ 0"6 % 
= 1 "224 

• td stands for tetrahedral distribution. 
i" tp stands for tetrahedral plus 4th order cubic distribution. 

Results based on refinement 
of 'low-angle' data 

Confidence 
Computed level for 
weighted-R rejection of 
factor ratios hypothesis 
Rl =2-601 <~0.5 % 

R2 = 1 "389 < 0"5 % 

R~ = 1.868 <0"5 % 

R2= 1"237 <0"5 % 



J. F. M C C O N N E L L  A N D  P. L. S A N G E R  87 

shown in equation (9), gives the result, 

N+=0.0807 (0.0291) electrons.  (14) 

N o n - s p h e r i c a l  ana lys i s  o f  d i a m o n d  d a t a  us ing  H F S  w a v e  
f u n c t i o n s  

The choice of the set of  basis wave functions that  are 
to be used in these non-spherical  calculations is im- 
portant,  since it influences the values of the differences 
that  are finally used in these analyses [see equation (6)]. 

It is of  interest, therefore, to consider the effect of  
using a different set of  theoretical wave functions to 
approximate  the spherical component  of the 'bonded '  
atom. For this purpose the Har t ree-Fock-Sla ter  (HFS) 
wave functions of Hanson,  Herman,  Lea & Skil lman 
(1964) were used, since these represented the first rel- 
atively complete set of wave functions for the elements 
Z = I  to Z- -100  calculated to the same numerical  
accuracy. The ground state wave functions for car- 
bon  corresponding to the electronic configuration 
C(ls)2(2s)2(2p) 2 were used. Convent ional  full-matrix 
least-squares refinement of  the complete set of  d iamond 
data using the HFS wave functions gave Be=0.218 
(0.009) ~2, with the scale factor fixed at unity, and 
structure factors, Feale(HFS), based on these param- 
eters are included in Table 1. It is interesting to note 
that  the spherical 'prepared '  model  in this case gives a 
better fit to the observed data than the corresponding 
H F  results. 

Least-squares refinement of  the complete set of data 
using a model  including the effects of tetrahedral dis- 

tortion gave the parameters 

A =9.21 (2.78) 
B = 2.56 (0.30) 
Bc=0 .218  (0.005)/~2. 

(15) 

Applicat ion of the significance tests showed that  intro- 
duction of the tetrahedral distortion gave a highly 
significant improvement  in the fit to the experimental  
data (see Table 2). 

When  a 4th order cubic distortion is also included 
in the model  the parameters 

A =8.71 (2.44) 
B =2.63 (0.25) 
C = - 2 . 3 6  (0.83) 
Bc = 0.220 (0.004)/k z (16) 

are obtained by full-matrix least-squares refinement of 
the complete set of  d iamond data. Results based on 
these parameters,  Feale, Tc(HFS), are included in Table 
1 and the calculations summarized in Table 2 show 
that inclusion of the 4th order cubic distortion into 
the calculated structure factors has made a further 
significant improvement  in the fit to the observed dia- 
mond  data. 

Compar ison  of the results given in equations (9) and 
(16) show that the e.s.d.'s of  the distortion parameters 
for the HFS calculations are approximately double 
those for the H F  calculations. The smaller e.s.d.'s for 
the distortion parameters and the better agreement fac- 
tors obtained for the structure factors based on the 
'complete '  distortion model,  Feale, 7"c(HF), show that 
the calculations based on the H F  wave functions give 

Table 3. 

hkl sin 0/2 (~-1) 
111 0.15946 
220 0.26040 
311 0.30534 
222 0.31892 
400 0.36826 
331 0.40130 
422 0.45102 
333~ 0.47838 
511J 0.47838 
440 0.52079 
531 0.54466 
620 0.58226 
533 0.60370 
444 0.63784 
551 } 0.65747 
711 0.65747 
642 0.68894 
731~ 0-70716 
553J 0.70716 
822 ~ 0.78119 
660 J 0.78119 
751~ 0.79730 
555J 0.79730 
880 1-04159 
777 1.11622 
888 1.27568 
10,10,0 1.30198 

Experimental structure factors for  silicon on an absolute scale 

Fobs(GW) 
60.81 +0.11 
67.84+0"16 
44.12+0"17 

-1.36+0"08" 
56-16+0"24 
39.26-t-0.11 
50.72 + 0.24 
33.54 + 0.34 
33.54 +_ 0.34 
43.12+0.32 
28.91 +0.11 
37.68 + 0.08 
25.68+0.11 
33.68+0.56 
22.40 + 0.28 
22.40 + 0.28 
29.44 + 0.24 
19.864-0.23 
19.86 + 0.23 
23.52 + 0.24 
23.52 + 0.24 
i5-95+0.23 
15.95 + 0.23 

Fobs(DMW) 
60"98 + 0.45 
68.32+0.48 
44"35 + 0"45 

- 1.36 + 0.08 
58-72 + 0"64 
39.54 + 0-51 
50"64 + 0.72 
33.71 + 0"40 
34.05 + 0-45 
43.60+0-56 

34.72 + 0.56 

23.52 + O.4O 
15.95 + 0.28 
15.95 + 0.28 
11.92+0.32 
7-75 + 0.23 
7"76 + 0.24 
7.28 + 0.24 

Fobs(HKKK) 
62.11 + 0-28 
68.64 + 0"40 
44.01 + 0"06 

- 1.36 __+ 0-08* 
56.16+0.64 
38.98 4- 0.34 
49.60+0.16 
33.15 
32.92 
43.28 + 0.80 
29.42 + 0.57 
37-68 
25-40 + 0.40 
33.76 
23.19+0.11 

* 222 reflexion of DeMarco & Weiss (1965). 
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a significantly better fit to the observed data. The HF 
wave functions are normally preferred for crystallo- 
graphic calculations (Cromer, 1965b), especially for 
lighter elements, and in the refinements of the various 
sets of silicon data, to be described in the following 
sections, only a spherical 'prepared' model based on 
HF wave functions will be used. 

X-ray data for silicon 

Three different sets of X-ray data for silicon are avail- 
able in the literature. Each set of data was measured 
at room temperature (taken to be 20 °C) and was placed 
on an 'absolute scale' by the relevant authors. These 
are the powder measurements of GSttlicher & WSlfel 
(1959), the perfect single-crystal measurements of De- 
Marco & Weiss (1965) and the pendellSsung fringe 
results of Hattori, Kuriyama, Katagawa & Kato (1965). 

Structure factors for each of these three sets of silicon 
data are listed in Table 3, the values of (sin 0)/2 in 
this Table being calculated using the cell parameter 
a= 5.431 A, at 20°C (DeMarco & Weiss, 1965). 

The Fobs(GW) data of Table 3 are obtained by con- 
verting the experimental results of G6ttlicher & W61fel 
(1959) to structure factors. The f (DMW) results given 
in Table 1 of DeMarco & Weiss (1965) represent the 
version for stationary atoms obtained by correcting 
their actual measurements for the effects of thermal 
vibration, using the temperature factor Bsi = 0.444 A,2, * 

* This value corresponds to the Debye temperature O i  = 
543°K determined by Batterman & Chipman (1962). 

and for anomalous dispersion effects (Afsi=0.1) which 
occur when Mo Kc~ radiation is used to collect the data. 
Reversing this procedure and then converting the resul- 
tant numbers to structure factors give the Fobs(DMW) 
values of Table 3. The Fous(HKKK) data in this Table 
are taken from the f ( H K K K )  values of Hattori et al. 
(1965), with the error estimates of Dawson (1967c), 
converted to structure factors. For the 222 reflexion, 
no result is recorded by G6ttlicher & W/31fel (1959) 
or Hattori et al. (1965). Following Dawson (1967c), 
the DeMarco & Weiss (1965) value has been taken, 
which is the room temperature measurement of Weiss 
& Middleton (1965), for which there is no dispersion 
correction. 

Full-matrix least-squares refinement of each com- 
plete set of silicon data, allowing an isotropic tem- 
perature factor to vary while the scale factor was fixed 
at unity, gave the results: 

Fobs(HKKK) data: Bsi=0.449 (0.028)/~t 2 
Fobs(DMW) data: Bsi=0"455 (0.036) A 2 (17) 
Fobs(GW) data: Bsi = 0.471 (0.020) It 2 . 

Allowance was made for the effects of anomalous dis- 
persion by using the real part of the dispersion correc- 
tion, where Afsi=O.09 for the Fobs(DMW)I and 
Fobs(GW)t data (Cromer, 1965a) and Afs ~ =0.075 for 
the Fobs(HKKK)~ data. 

t Data collected using Mo K~ radiation. 
:i: Data  collected using both Mo and Ag K~ radiations, the 

value 0.075 being the mean of the values of A fsi for the separate 
radiations. 

Table 4. Calculated structure factors for  silicon on an absolute scale 

Results to be compared with 
Fobs(HKKK) 

hkl FeaIo(HF) Feale, Tc(HF) 
111 59"398 62"088 
220 68"162 68"656 
311 44"686 43"933 
222 0"000 - 1"420 
400 57"075 56"071 
331 38"197 38"574 
422 49"495 49"607 
333~ 33"260 33"302 
511J 33.260 33.131 
440 43.289 43.346 
531 29.151 29.139 
620 38.064 37.997 
533 25.681 25.742 
444 33-641 33.698 
551 22.742 22.766 

Agreement Ru=0"0155 Ru=0"0044 
factors Rw=0"0260 Rw=0"0053 

Results to be compared with 
Fobs(DMW) 

hkl Feaae(HF) Feale, r (HF)  
111 59"473 60"957 
220 68"250 68"249 
311 44"742 44"307 
222 0"000 - 1"363 
400 57"141 57"139 
331 38"239 38"414 
422 49"544 49"540 
333~ 33"291 33"175 
511J 33.291 33.310 
440 43.325 43.321 
444 33.659 33-655 
660 23.976 23.971 
555~ 16.303 16.298 
751J 16.303 16.306 
880 12-813 12.809 
777 7.635 7.631 
888 7.629 7.625 
10,10,0 7-220 7.216 

Ru=0"0217 Ru=0"0159 
Rw=0"0566 R~v=0"0181 

Results to be compared with 
Fobs(GW) 

hkl Feale(HF) Feale, Tc(HF) 
111 59"449 60"613 
220 68"176 68"549 
311 44"675 43"986 
222 0"000 - 1"477 
400 57"017 55"702 
331 38"140 38"686 
422 49"382 49"567 
333~ 33"169 33"260 
511J 33-169 32.916 
440 43.137 43-237 
531 29-035 29-009 
620 37.883 37.732 
533 25.547 25-649 
444 33.441 33.541 
551} 22-596 22.630 
711 22"596 22-505 
642 29"676 29"694 
553~ 20"092 20"070 
731J 20"092 20"105 
660 ] 23"742 23"703 
822 ] 23.742 23.747 
555~ 16"138 16"133 
751J 16.138 16"167 

Ru=0.0137 Ru=0"0087 
Rw=0-0224 Ru,=O'O086 
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In these refinements the spherical 'prepared' model 
was based on the HF wave functions of Clementi (1965) 
for the ground state of silicon, Si(3p). Batterman & 
Chipman (1962) give the value OM=543°K for the 
Debye temperature of silicon with an 'error' of _+ 8 °K. 
If this 'error' is taken to be the e.s.d, for OM then each 
of the isotropic temperature factors given in equation 
(17) agrees with the value Bsi=0.444 A 2 calculated 
from O~¢. 

Structure factors, Feale(HF), for the spherical 'pre- 
pared' model, calculated using the temperature factors 
of equation (17), are listed in Table 4 for each of the 
three sets of silicon data. 

Non-spherical analysis of the silicon data of Hattori et 
aL (1965) using HF wave functions 

Full-matrix least-squares refinement of the complete 
set of silicon data of Hattori et al. (1965), using a 
model including the effects of tetrahedral distortion 
only, gave the results: 

A = 1.045 (0.318) 
B =0.796 (0.096) 
Bsi=0"452 (0"013) A 2 (18) 

(note that unit weights were used in this analysis be- 
cause of the uncertainty in the e.s.d, of some of the 
Hattori et al. (1965) data). Once again, the model in- 
cluding the effects of tetrahedral distortion can be 
shown to give a highly significant improvement in the 
fit to the observed data (see Table 5). 

Inclusion of a 4th order cubic distortion also gives 
a highly significant improvement to the spherical 'pre- 
pared' plus tetrahedral distortion model, see Table 5, 
and the least squares fitted parameters in this case are: 

A =1.037 (0.208) 
B =0.863 (0.059) 
C = - 0 . 3 9 8  (0.097) 
Bsi =0.449 (0.008) A 2 . (19) 

Resul t s ,  Feale, Tc(HF), based on these parameters are 
included in Table 4. Using the values of the distortion 
parameters given in equation (19) the quantities N+ 
and n-, the amount of charge redistributed per bond 
by the tetrahedral and 4th order cubic distortions re- 
spectively, are found to be 

N+ = 0.1245 (0.0463) electrons 
n-=0.0439 (0.0182) electrons. (20) 

The details of this type of calculation for silicon 
have already been described by Dawson (1967c) who 
also presents a calculation of the total non-spherical 
distribution in the (1T0) plane of silicon; the main 
feature of this calculation shows that the electron den- 
sity associated with the bonding features is smaller in 
magnitude in silicon than it was in diamond. This 
seems strange at first, since a comparison of the results 
given in equations (12), (14) and (20) show that the 
extent of electron redistribution is slightly greater in 
silicon than in diamond; however, the lattice param- 
eter for silicon is larger than that for diamond so that 
the redistribution occurs over a larger volume and thus 
the electron density everywhere is lower. 

Non-spherical analysis of the silicon data of Giittlicher 
& Wiilfel (1959) using HF wave functions 

Analysis of the complete set of silicon data of G6tt- 
licher & W61fel (1959) shows that a model including 
the effects of tetrahedral distortion gives a highly signi- 
ficant improvement in the fit to the observed data, and 

Table 5. Application of  the significance tests of  Hamilton (1964, 1965a) to the results obtained by comparing the 
various distortion models, based on the HF wave functions of  Clementi (1965), with the three different sets of  

Silicon Significance 
measurements points 

Single crystal R2,12,o.oo5 
data of = 1"555 
Hattori et al. RI, 11,o.oo5 
(1965) = 1"453 

Powder data of R2, 20,0.005 
G6ttlicher = 1.303 
& W61fel R1,19,0.o10 
(1959) =1.196 

Single crystal R2, 15,0.005 
data of = 1-424 
DeMarco & R1,14,0.25o 
Weiss (1965) = 1.050 

RI,  14,0.500 
= 1"017 

silicon data at present available in the literature 

Results based on refinement Results based on refinement 
of complete set of data of 'low-angle' data 

Computed Confidence l eve l  C o m p u t e d  Confidence level 
weighted-R for rejection weighted-R for rejection 
factor ratios of hypothesis factor ratios of hypothesis 
R1 =2.889 ,~0.5 % R1 =2.378 ,~0.5 % 

R2 = 1 "697 < 0"5 % R2 = 1 "697 < 0"5 % 

R1 =2-133 40"5 % RI =2"112 40"5 % 

R2 = 1"221 ---0"7% R2 = 1"190 --~ 1"2% 

RI = 3.127 ,~0"5 % R1 = 3"065 40"5 % 

R2 = 1.023 ,,~ 45 % RE = 1 "022 ,-~ 45 % 
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also that inclusion of a 4th order cubic distortion into 
the model produces a further significant improvement 
in the fit to the observed data. The parameters for the 
'complete' distortion model are: 

A =1.474 (0.355) 
B =1.271 (0.145) 
C = - 0 . 8 2 5  (0.324) 
Bsi =0.472 (0.008) A 2 

(21) 

and structure factors, Foaxe, 7'c(HF), based on these 
parameters are listed in Table 4, the details of the signi- 
ficance testing again being given in Table 5. 

Non-spherical analysis of the silicon data of Demarco 
& Weiss (1965) using I-IF wave functions 

When the complete set of silicon data of DeMarco & 
Weiss (1965) are analysed for non-spherical effects, a 
model including the effects of tetrahedral distortion 
alone is found to give a better fit to the experimental 
data than that obtained by using the spherical 'pre- 
pared' model. The relevant parameters are: 

A =0.972 (0-198) 
B =0.950 (0.193) 
Bsi=0.455 (0.012) A 2 

(22) 

and structure factors, Feale, T(HF), based on these par- 
ameters are given in Table 4. The appropriate signi- 
ficance tests are listed in Table 5 which also shows that 

the inclusion of the effects of a 4th order cubic distor- 
tion in this case does not produce any further signi- 
ficant improvement in the fit to the observed data. 

A second approach 

All of the non-spherical analyses described in the pre- 
ceding sections have been carried out on the complete 
set of experimental data available. The full-matrix 
least-squares refinements used in these analyses al- 
lowed for the simultaneous variation of an isotropic 
temperature factor, a scale factor and the relevant dis- 
tortion parameters; however, as mentioned before, the 
scale factor could be taken to be unity in all cases. 
These results are conveniently summarized in Table 6. 

A second approach to these non-spherical analyses 
is to refine the 'high-angle' data for an isotropic tem- 
perature factor (with the scale factor fixed at unity), 
and subsequently refine the 'low-angle' data (with the 
scale factor fixed at unity and the isotropic temperature 
factor fixed at the value found from the 'high-angle' 
data) for bonding features. The basis of this approach 
is that the bonding features are predominantly an 
outer-electron phenomena and must primarily affect 
the 'low-angle' data whereas the reverse is true for 
thermal vibration effects. Beyond a certain limit, then, 
the numerical uncertainties associated with the random 
errors that are present in all experiments could be con- 
sidered to be of the same magnitude as any genuine 
features of non-sphericity that the data could possibly 
contain. The inchision of these 'high-angle' data in any 

Table 6. Results obtained by analysing the various complete sets of  diamond and silicon data for bonding features 
using the distortion models described in the text 

Diamond 
Observed data GW (1959) 

Wave functions used HF 

Parameters for spherical Bc =0.204 
'prepared' model alone (0-011)/~2 

No. of reflexions used 24 
Agreement factors Ru 0.0325 

Rw 0"0372 
A 7"78 (1"87) 
B 2"15 (0"19) 

*BT (A 2) 0.205 (0-004) 
24 

Ru 0"0140 
Rw 0"0140 

Highly 
significant 

7"05 (1"43) 
2-21 (0"14) 

-2"11 (0"52) 
*B~, (/~2) 0"206 (0"003) 

24 
Ru 0"0097 
Rw 0"0101 

Highly 
significant 

Parameters for 
tetrahedral 
distortion model 

No. of reflexions used 
Agreement factors 

Improvement obtained 
by using this model 

Parameters for tetrahedral A 
plus 4th order cubic B 
distortion model C 

No. of reflexions used 
Agreement factors 

Improvement obtained 
by using this model 

Diamond Silicon Silicon Silicon 
GW (1959) HKKK (1965) GW (1959) DMW (1965) 

HFS HF HF HF 

Bc = 0-218 Bsi = 0.449 B s i  = 0"471 Bsi = 0"455 
(0.009) .~2 (0.028) A2 (0.020) A2 (0"036)/~,2 

24 15 23 18 
0.0327 0"0155 0"0137 0"0217 

0"0312 0"0260 0"0224 0"0566 
9"21 (2-78) 1"045 (0.318) 1"169 (0.286) 0"972 (0"198) 
2.56 (0-30) 0"796 (0"096) 1.053 (0"131) 0-950 (0"193) 
0.218 (0"005) 0"452 (0"013) 0"474 (0.010) 0-455 (0-012) 

24 15 23 18 
0-0176 0"0075 0.0092 0-0159 
0"0162 0"0090 0"0105 0"0181 

Highly Highly Highly Highly 
significant significant significant significant 

8.71 (2.44) 1-037 (0-208) 1.474 (0-355) 0.922 (0.169) 
2.63 (0"25) 0.863 (0.59) 1.271 (0.145) 0.877 (0.201) 

-2.36 (0.83) -0.398 (0.097) -0.825 (0.324) 0.240 (0-275) 
0"220 (0"004) 0.449 (0.008) 0-472 (0.008) 0.455 (0-012) 

24 15 23 18 
0.0147 0.0044 0.0087 0.0159 
0"0133 0.0053 0.0086 0"0177 

Highly Not 
Significant significant Significant significant 

* BT is the appropriate isotropic temperature factor allowed to vary in the refinement (i.e. Be for the diamond data, and Bsi 
for the silicon data). 



J. F. M C C O N N E L L  AND P. L. S A N G E R  91 

non-spherical analysis could then be expected to de- 
grade the physical meaning of the parameters thus ob- 
tained, and could also lead to unduly high e.s.d.'s for 
the corresponding distortion parameters. 

This second approach is essentially that used by 
Dawson (1967b, c) in his analysis of diamond and sili- 
con, and for the purposes of his calculations the 'low- 
angle' limit was taken to be (sin 0)/2=0.7 A -1 for 
diamond and (sin 0)/2=0.5 A -1 for silicon. However, 
Dawson (1967b, c) fitted his distortion parameters by 
a trial-and-error process and obtained the parameters 
A =7.5, B=2.2, C=  - 2 . 0  for diamond using the data 
of G6ttlicher & W/51fel (1959), and A = 1.11, B=0.88, 
C =  -0.321 for silicon using the data of Hattori et al. 
(1965); all calculations being based on HF wave func- 
tions. 

In order to examine the consequences of this second 
approach in the present calculations, the various sets 
of data for diamond and silicon have been analysed a 
second time using this second approach, the required 
calculations again being carried out by full-matrix 
least-squares refinement. The same 'low-angle' limits 
(sin 0)/2=0.7 A -1 for diamond and (sin 0)/2=0.5 A -1 
for silicon were used in these calculations. Although 
the non-spherical analyses, in this case, are carried out 
on the 'low-angle' data, the success of the appropriate 
distortion model should still be judged by its fit to the 
complete set of data; consequently all agreement fac- 
tors should be calculated for the complete set of the 
relevant data. It is also important to note that when 
the 'low-angle' data are to be refined using a model 

that includes only the effects of tetrahedral distortion 
with the scale factor and temperature factor fixed, the 
reflexions of type h + k + l=  4n must be removed from 
the refinement and this places a further restriction on 
the number of reflexions used to define the tetrahedral 
distortion parameters (e.g. in diamond only four 'low- 
angle' reflexions can be used to define the tetrahedral 
distortion parameters). 

The results obtained by using this second approach 
are summarized in Table 7. Comparison of the results 
given in Tables 6 and 7 show that the general con- 
clusions based on the significance tests of Hamilton 
(1964, 1965a) are the same for the two approaches, 
with the value of Rw being identical or slightly lower 
if the complete set of data is used in the refinements. 
It is rather difficult to compare the e.s.d.'s of the dis- 
tortion parameters from these two sets of calculations 
since different numbers of reflexions have been used 
for the various models in the second approach. How- 
ever, taking the e.s.d.'s at their face value, it is inter- 
esting to note that the second approach produces 
smaller e.s.d.'s for the distortion parameters associated 
with the best refinements: - that is, for the diamond 
data of G~Sttlicher & W61fel (1959) and the silicon data 
of Hattori et al. (1965), when HF wave functions are 
used. On the other hand, the second approach pro- 
duces larger e.s.d.'s for the distortion parameters for 
the refinement of the diamond data of G6ttlicher & 
W61fel (1959) using HFS wave functions, and for the 
silicon data of G/Sttlicher & WiSlfel (1959) and De- 
Marco & Weiss (1965) using HF wave functions. 

Table 7. Results obtained by using a second approach to analyse the various sets of  diamond and silicon data for 
bonding effects 

Diamond Diamond Silicon Silicon Silicon 
Observed data GW (1959) GW (1959) HKKK (1965) GW (1959) DMW (1965) 

Wave functions used HF HFS I/IF HF HF 
Parameters for spherical Bc = 0.207 Bc = 0.219 Bsi = 0.448 Bst = 0.483 Bsi = 0.465 
'prepared' model (0"003) .~2 (0.003) A 2 ( 0 . 0 1 2 ) / ~ 2  (0"003)/1,2 (0.012) A 2 

No. of reflexions used 17 17 6 14 9 
Agreement factors Ru 0.0324 0.0327 0.0156 0-0125 0.0227 

Rw 0"0372 0.0312 0"0214 0.0226 0"0567 
Parameters for tetrahedral A 9"00 (1.96) 11.92 (4"04) 1.054 (0.275) 1.162 (0"502) 0"969 (0.213) 
distortion model B 2.26 (0.18) 2.80 (0.37) 0.799 (0.083) 1"048 (0.229) 0-946 (0.209) 

No. of reflexions used 4 4 6 6 6 
Agreement factors Ru 0.0143 0.0181 0.0074 0"0083 0.0169 

R,o 0.0143 0-0167 0.0090 0.0107 0.0185 
Improvement obtained by Highly Highly Highly Highly Highly 
using this model significant s i g n i f i c a n t  s i g n i f i c a n t  s i g n i f i c a n t  significant 

Parameters for tetrahedral A 7.50 (0"90) 9.91 (4.28) 1.043 (0.164) 1"450 (0"635) 0"919 (0"190) 
plus 4th cubic order B 2.27 (0.08) 2.76 (0"40) 0.864 (0.046) 1.256 (0"263) 0.871 (0.230) 
distortion model C - 2.46 (0.35) - 2.83 (1.48) - 0.393 (0.076) - 0.797 (0"608) 0.254 (0-313) 

No. of reflexions used 7 7 9 9 9 
Agreement factors Ru 0.0093 0.0149 0.0044 0.0079 0.0168 

Rw 0.0103 0.0135 0.0053 0.0090 0.0181 
Improvement obtained by Highly Highly Highly Not 

using this model significant s i g n i f i c a n t  s i g n i f i c a n t  S i g n i f i c a n t  significant 

In this approach the 'high-angle' data have been refined for an isotropic temperature factor, with the scale factor fixed at unity. 
The 'low-angle' data were subsequently refined using the distortion models described in the text. The agreement factors quoted 
below have been calculated for the complete set of data, although the various refinements were carried out using different parts 
of the complete set of data. 
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While the present calculations do not 'prove' that 
one approach is better than the other, we prefer to 
base our conclusions on the more conventional ap- 
proach of carrying out full-matrix least-squares refine- 
ment of the complete set of data at our disposal, al- 
lowing simultaneous variation of all the parameters 
that describe the calculated model used to fit the ob- 
served data. This conventional approach avoids any 
possibility of biasing the results obtained for any bond- 
ing or other features by a subjective restriction of the 
analysis to consider only a certain range of data. 

Discussion 

In the above refinements, the two sets of powder data 
of G0ttlicher & W61fel (1959) have virtually been 
treated as though they were single-crystal data, in that 
equivalent reflexions have been included as separate 
reflexions in the refinement. In the case of powder ex- 
periments, equivalent reflexions are measured as a 
combined intensity and divided, using the appropriate 
multiplicity, on the basis of a common structure factor 
for each of the individual reflexions in the equivalent 
set. When the non-spherical model is introduced, re- 
flexions occurring at the same value of (sin 0)/2 are 
not necessarily equivalent and the combined intensity 
should be divided in a different way. One way of avoid- 
ing the problems of equivalent reflexions is to treat the 
'overlapped' and 'equivalent' reflexions as a group 
measurement and to make special allowance for this 
in the least-squares refinement. This suggestion is sim- 
ilar to the method used by McDonald (1967) to refine 
his neutron powder measurements on aluminum. How- 
ever, this procedure could not be adopted here since 
only the structure factors of the various reflexions were 
reported in the literature. Fortunately, in the case of 
diamond and silicon the 'equivalent' reflexions occur 
mainly at high angles and would have a small effect 
on bonding studies; only the 'low-angle' pair 511-333 
could possibly produce a significant effect on the pres- 
ent calculations. 

A possible source of error in the non-spherical anal- 
yses involves the degree to which the criterion of 
'absolute' measurements applied to the various sets of 
diamond and silicon data. In this respect the silicon 
measurements of Hattori et al. (1965) were slightly 
more favourable since the results of the fringe-spacing 
study must be 'absolutely absolute' (Kato, 1965) al- 
though the quality of measurements still depends on 
the degree to which technical difficulties in the pendel- 
1/Ssung experiment can be overcome and on the extent 
to which the underlying theory is adequate. Each group 
of authors claimed that its data were on an 'absolute' 
scale, and the analyses described here support these 
claims in that any attempt to use a scale factor dif- 
ferent from unity is without significance. The necessity 
to add the value of the structure factor of the 222 re- 
flexion, as determined in a separate experiment, to each 
set of data requires additional consideration. However, 

there appear to be no grounds to doubt the 'absolute- 
ness' of the figures used. Moreover the low value of 
the 222 structure factor ensures that any reasonable 
scaling error in relation to the rest of the data 
would have had little effect on the present calcula- 
tions. 

The set of wave functions chosen to approximate 
the spherical component of the 'bonded' atom influ- 
ences the final differences that are to be fitted by non- 
spherical distortions, and hence the distortion param- 
eters and the final description of the bonding redistri- 
bution obtained by the fitting process. This point is 
illustrated by the non-spherical analyses of the com- 
plete set of diamond data of G/Sttlicher & W/51fel (1959) 
carried out using HF and HFS wave functions. The 
HFS wave functions gave a better spherical 'prepared' 
model but the distortion models for the HF calcula- 
tions gave a much better fit to the diamond powder 
and this was also indicated by the smaller values of 
the e.s.d.'s of the distortion parameters obtained from 
the HF calculations. 

Non-spherical analysis of each complete set of sili- 
con data shows that introduction of a tetrahedral dis- 
tortion of the HF spherical 'prepared' distribution 
produces a highly significant improvement in the fit 
to the observed data. Subsequent introduction of a 4th 
order cubic distortion produces a highly significant 
improvement in the fit to the observed measurements 
only in the case of the Hattori et al. (1965) silicon data; 
while a significant improvement is obtained for the 
silicon data of G~Sttlicher & W/51fel (1959). 

It is interesting to note that the tetrahedral plus 4th 
order cubic distortion of an HF spherical 'prepared' 
charge distribution gives a much better fit to the dia- 
mond than to the silicon powder measurements of 
Gtittlicher & WtHfel (1959). 

In the full-matrix least-squares refinements carried 
out here, there was found to be large correlation be- 
tween the distortion parameters, and this was reflected 
by their large e.s.d.'s. 

It is important to realize that the expression of a 
confidence level using the significance tests of Hamil- 
ton (1964, 1965a) refers to the fitting of the calculated 
and observed structure factors only and does not neces- 
sarily imply a similar confidence in the correctness or 
uniqueness of the original model. In the present con- 
text, such confidence will follow the successful appli- 
cation of these methods to other crystals. However, 
the recent success of the use of anharmonic tempera- 
ture factors in the analysis of neutron diffraction data 
on various compounds with the fluorite lattice [e.g. 
CaF2, Dawson, Hurley & Maslen (1967); UOz, Rouse, 
Willis & Pryor (1968); BaF2, Cooper, Rouse & Willis 
(1968)] in which a spectacular improvement in agree- 
ment is effected by the introduction of a single par- 
ameter, confirms the correctness of one essential part 
of the bonding models used here, namely the necessity 
to satisfy the point group symmetry at the atom 
site. 
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Conclusions 

Calculated structure factors based on a model that in- 
cludes the effects of a tetrahedral and a fourth order 
cubic distortion of the spherical 'prepared' charge dis- 
tribution have given a highly significant improvement 
in the fit to the diamond powder measurements of 
G6ttlicher & W61fel (1959) and to the silicon single 
crystal data of Hattori et al. (1965), when the HF wave 
functions of Clementi (1965) are used to describe the 
spherical 'prepared' distribution. 

It is maintained that it is preferable to use full- 
matrix least-squares, combined with the significance 
tests of Hamilton (1964, 1965a) to analyse the com- 
plete set of experimental data for bonding features 
since in this way more information is obtained about 
the parameters that define the more complicated struc- 
ture factor model. This point is becoming well rec- 
ognized and has been used by Rouse, Willis & Pryor 
(1968) to analyse their neutron diffractioa data on UO2. 

The necessity for placing restrictions on the form of 
the radial functions associated with the non-spherical 
distortions, the large e.s.d.'s of the distortion param- 
eters and the dependence of the parameter values on 
the basis wave functions chosen to describe the spher- 
ical 'prepared' charge distribution indicate the need for 
exercising caution in analysing the experimental meas- 
urements for bonding features. 

Some of the calculations described in this paper were 
carried out at the Australian Atomic Energy Commis- 
sion Research Establishment and were partly financed 
by a grant from the Australian Institute of Nuclear 
Science and Engineering. 
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The Effect of Absorption in the Small Angle Diffraction of X-rays from Stacked Lamellae 
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An expression for the scattering from a regular stack of lamellae is developed, maintaining an absorp- 
tion term in the calculation. The effect of the absorption is to broaden peaks at small Bragg angles. The 
lzeaks sharpen with increasing order of diffraction. An expression for the lower angular limit of observ- 
able diffraction is evolved. 

Introduction 

The use of X-ray small angle scattering is widespread 
in the study of stacked lamellar polymer systems (see 

* On leave from Department of Chemical Engineering, 
University of Delaware, Newark, Delaware 19711. 

Geil, 1963, for a review) and has recently been used to 
study lamellar spinodal decomposition in an A1-Zn 
alloy (Rundman & Hilliard, 1967). The scattering by 
such systems yields peaks at small angles. In polymeric 
systems several orders are sometimes observed. Taking 
the stacking to be regular, the small angle peaks are 
conveniently treated as a diffraction phenomenon. The 


